Gaussian Mixture Model Based Classification of Microcalcification in Mammograms Using Dyadic Wavelet Transform

نویسنده

  • Suman Mishra
چکیده

Breast cancer is a serious health related issue for women in the world. Cancer detected at premature stages has a higher probability of being cured, whereas at advanced stages chances of survival are bleak. Screening programs aid in detecting potential breast cancer at early stages of the disease. Among the various screening programs, mammography is the proven standard for screening breast cancer, because even small tumors can be detected on mammograms. In this study, a novel feature extraction technique based on dyadic wavelet transform for classification of microcalcification in digital mammograms is proposed. In the feature extraction module, the high frequency sub-bands obtained from the decomposition of dyadic wavelet transform is used to form innovative sub-bands. From the newly constructed sub-bands, the features such as energy and entropy are computed. In the classification module, the extracted features are fed into a Gaussian Mixture Model (GMM) classifier and the severity of given microcalcification; benign or malignant are given. A classification accuracy of 95.5% is obtained using the proposed approach on DDSM database.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multi Layer Architecture for Breast Cancer Diagnosis

Hariharan Ranganathan Principal, Rajiv Gandhi College of Engineering, Chennai, India [email protected] Abstract Breast cancer is one of the dangerous cancers among women. Due to this, the rate of death increases every year. In order to ease the radiologist task and early detection of breast cancer, multilayer architecture based on dyadic wavelet transform and Gaussian Mixture Model (GMM) is prop...

متن کامل

Detection of Microcalcification in Mammograms Using Wavelet Transform and Fuzzy Shell Clustering

Microcalcifications in mammogram have been mainly targeted as a reliable earliest sign of breast cancer and their early detection is vital to improve its prognosis. Since their size is very small and may be easily overlooked by the examining radiologist, computer-based detection output can assist the radiologist to improve the diagnostic accuracy. In this paper, we have proposed an algorithm fo...

متن کامل

Contrast Enhancement of Mammograms for Rapid Detection of Microcalcification Clusters

Introduction Breast cancer is one of the most common types of cancer among women.  Early detection of breast cancer is the key to reducing the associated mortality rate. The presence of microcalcifications clusters (MCCs) is one of the earliest signs of breast cancer. Due to poor imaging contrast of mammograms and noise contamination, radiologists may overlook some diagnostic signs, specially t...

متن کامل

Texture Classification of Diffused Liver Diseases Using Wavelet Transforms

Introduction: A major problem facing the patients with chronic liver diseases is the diagnostic procedure.  The conventional diagnostic method depends mainly on needle biopsy which is an invasive method. There  are  some  approaches  to  develop  a  reliable  noninvasive  method  of  evaluating  histological  changes  in  sonograms. The main characteristic used to distinguish between the normal...

متن کامل

Comparative Analysis of Image Denoising Methods Based on Wavelet Transform and Threshold Functions

There are many unavoidable noise interferences in image acquisition and transmission. To make it better for subsequent processing, the noise in the image should be removed in advance. There are many kinds of image noises, mainly including salt and pepper noise and Gaussian noise. This paper focuses on the research of the Gaussian noise removal. It introduces many wavelet threshold denoising alg...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013